北京【地图上的四季】

进入九月,天气转凉,秋意渐浓,北京进入一年中最美的季节。

北京是一个四季非常分明的城市,夏天和冬天比较漫长,春天和秋天虽然短暂,但加起来也有四个月,以下是在网上查询的北京四季划分:

  • 3月下旬到5月上旬是北京的春季,共2个月,其中
    • 3月下旬——4月上旬是初春,一个月;
    • 4月下旬——5月上旬是晚春,一个月。
  • 5月下旬到9月上旬是北京的夏季,共4个月,其中
    •     5月下旬——6月上旬是初夏,一个月;
    •     6月下旬——8月上旬是盛夏,两个月;
    •     8月下旬——9月上旬是晚夏,一个月。
  • 9月下旬到11月上旬是北京的秋季,共2个月,其中
    • 9月下旬——10月上旬是初秋,一个月;
    • 10月下旬——11月上旬是晚秋,一个月。
  • 11月下旬到次年3月上旬是北京的冬季,共4个月,其中
    • 11月下旬——12月上旬是初冬,一个月;
    • 12月下旬——次年2月上旬是隆冬,两个月;
    • 2月下旬——3月上旬是晚冬,一个月。

在北京生活多年,一直想制作一幅北京的四季地图,在上一篇公众号文章中,我们介绍了公司新推出的ECartoRender晕渲产品解决方案(【ECartoRender】地貌晕渲解决方案),在地貌晕渲以及三维景观地图制作方面有很好的应用。

于是,最近做了几幅北京的晕渲地图,使用同一个DEM数据源,叠加了四个季节的卫星影像,影像的时相选取分别依据上述的四季分划时间,目前跟大家分享的还是初步成果,影像的左下角还有少量缺失,将在后续进行完善。

大家可以从地图上感受大北京的四季,也能从地图上感受北京的地形地貌特征。

基础DEM数据和Landsat 8卫星影像的前期处理工作主要使用Geographic Imager和Global Mapper,DEM主要的处理工作为镶嵌,裁切,高程拉伸等(将高程数据拉伸到0-65535,然后存为无符号的16位数值型),Global Mapper中的栅格计算功能非常适合,影像数据的主要处理工作为投影变换、镶嵌、调色以及与DEM套合裁切,这些工作在Geographic Imager和Global Mapper中非常便。


数据源的下载与处理可以参考左下角“阅读原文”和”【干货分享】Landsat 8 Photoshop教程


后期的渲染工作主要在ECartoRender中进行,因为采用基于光线追踪的渲染算法,其效果远远好于GIS晕渲的算法,产品采用3D动画建模的思路,可以进行丰富的设置(光照/材质/角度/去噪/掩膜/…等等),并具有动画建模能力,在地形晕渲和景观图制作方面具有非常好的应用效果。

(一)DEM数据源

(二)基础晕渲图

(三)叠加分层设色高度图

(四)叠加春季影像(时相2020/04/29)

(四)叠加夏季影像(时相2020/08/03)

(五)叠加秋季影像(时相2019/10/20)

(六)叠加冬季影像(时相:2020/01/08)

(七)斜视图(45度俯视)

【免费,优质GIS数据】:Global Mapper在线数据访问

在GIS行业,Global Mapper以无可比拟的数据格式支持能力,被誉为“格式转换之王”,如下图所示,Global Mapper支持300种以上的数据格式(查看支持格式列表)。今天我们要介绍Global Mapper另一个被广大用户所喜爱的特点——内置丰富的免费、优质GIS数据源。

format-support-1.gif

启动任何一个GIS项目都离不开数据,有时我们有一些基础的数据文件,但是呈现给客户还不够,那么,哪里可以进行在线数据访问来获取其他高质量数据呢?

image.png
Global Mapper™中的在线数据访问提供对100多种内置的影像和地形数据源以及地形图、地质图和土地覆盖图的流式访问。

Global Mapper的在线数据访问

幸运的是,Global Mapper内置的大量免费的在线数据可以随时加入到项目当中,Global Mapper中的在线数据服务提供对100多种内置的影像和地形数据源以及地形图,地质图和土地覆盖图的流式访问。

随着越来越多的数据源免费公开,访问在线的栅格数据是一件很常见的事,毕竟,我们不时会去下载使用Google地球或其他在线数据源的数据。Global Mapper的独特之处在于,您可以访问多个来源的全球地形数据。这些不是预先渲染的山体阴影,而是原始地形数据本身,可以在任何需要数字高程模型的项目中使用,例如等高线生成,视域分析,路径剖面,三维显示和流域分析等等场合。

untitled.png
Global Mapper的独特之处在于,您可以访问多个来源的全球地形数据。

我们已内置访问以下地形数据源的权限,这些数据源以超高效的GMG(Global Mapper Grid)格式托管在我们的服务器上,以实现最大访问速度:

  • SRTM 1-arc-second (30m) – 全球地形数据 (两极地区除外)
  • SRTM 3-arc-second (90m) – 全球地形数据 (两极地区除外)
  • ASTER GDEM 1-arc-second (30m) – 全球地形数据 (包括大部分两极地区)
  • USGS NED 1/3rd Arc Second (10m) Resolution –整个美国大陆的地形数据
  • US 3DEP 10m Resolution – 覆盖全部美国范围(包括夏威夷和阿拉斯加)

对于在环境和风力发电行业的用户,我们已经切片并托管了许多用于流式服务的土地覆盖数据集,包括欧洲的CORINE数据,美国的NLCD数据以及全球的ESA CCI数据。NASA GIBS(Global Imagery Browse Services)数据源提供来自多个NASA卫星传感器的每日更新,使您可以获取全球范围内的图像,雪和海冰覆盖以及任何所需日期的温度数据等信息。您可能需要加载几个不同的日期并使用”卷帘”工具比较不同时间的状态,或者您可能希望使用“Global Mapper”中丰富的GIS分析工具(栅格计算,体积计算等)进行一些更复杂的变化检测分析。

将您自己的数据源添加Global Mapper

尽管Global Mapper具有多种内置源,但我们无法包含所有可用的流数据源。我们在“在线数据”对话框上提供了一种机制,可以将您自己的源添加到内置列表中,从而使您像其他任何源一样可以从中流式传输数据。Global Mapper支持所有OGC标准数据源类型,例如用于流式栅格地图的WMS / WMTS,用于矢量数据集的WFS和用于为指定区域下载单个数据文件的WCS。预先切片的图像和地形数据集也可以使用OSM(OpenStreetMaps)、TMS(Tiled Map Service)和Google Maps瓦片架构支持。您只需要选择适当的源类型并提供来自数据提供者的服务URL,Global Mapper即可处理剩下的工作。

image.png
可以将您自己的web源添加到内置列表中,从而使您像其他任何源一样可以从中流式传输数据,您只需要选择适当的源类型并提供来自数据提供者的服务URL,Global Mapper即可处理剩下的工作。

最后,如果您有自己的数据集要作为web数据源托管,Global Mapper提供了一种将数据输出web瓦片,以便其他的GIS软件可以处理。Web导出选项允许您使用适当的文件夹和文件名结构将任何已加载的数据导出到JPG或PNG切片,以便上传到服务器以在内部或外部网络上进行流式访问。甚至还支持使用GMG(Global Mapper Grid)切片创建OSM切片集,因此您可以在Global Mapper中创建自己的流式地形(或其他网格数据)数据源。用户创建的流媒体源为您提供了一次托管数据的方式,使您的同事和客户可以快速浏览数据,而无需下载大量GB(或TB)的数据。

除了免费的数据源,Global Mapper也内置了一些高级的数据源需要账号(收费)才能登录,如NEXTMAP for Global Mapper系列高程数据,21.1版本新增的Blackbeard石油和天然气数据等。

我们会不断添加默认的免费在线数据列表。请及时更新您Global Mapper版本,以便您始终拥有最新数据和最快的使用方式。

北京易凯图科技有限公司作为Blue Marble Geographics在国内的唯一授权合作伙伴和Global Mapper技术服务提供商,可以为国内各行业用户提供官方的正版授权和良好的技术服务。

点击这里可以下载Global Mapper免费试用。

新冠病毒(COVID-19)相关数据&地图资源

随着新冠病毒在全球的大流行,作为GIS&地图制图行业公司,我们认识到需要可靠的数据和有关当前疫情暴发的更新信息。

下面,我们整理了有关已确认的COVID-19病例状况新冠病毒地图和数据的资源列表,部分数据已更新到Global Mapper在线数据资源列表中。

弗吉尼亚大学

https://nssac.bii.virginia.edu/covid-19/dashboard/

为了支持针对最近的冠状病毒大流行的计划和响应工作,弗吉尼亚大学生物复杂性研究所和计划的网络系统科学和高级计算(NSSAC)部门准备了一种可视化工具,该工具提供了一种独特的方法分析由NSSAC,1point3acres(美国)和JHU(01/22/2020-02/13/2020)策划的数据。此来源使您可以查看COVID-19的传播情况,确诊病例,死亡和康复病例。表格形式的数据可以CSV格式下载。

image.png

约翰霍普金斯大学:

https://gisanddata.maps.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6

约翰·霍普金斯大学制作和更新的交互式在线地图。

image.png

该仪表板于1月22日首次公开共享,显示了所有受影响国家/地区已确认的COVID-19确诊病例的位置和数量,死亡和康复情况。它的开发旨在为研究人员,公共卫生当局和公众提供一种用户友好的工具,以跟踪疫情的进展。此外,所有收集和显示的数据都可以免费使用,最初是作为google工作表,现在在GitHub存储库中,以及仪表板的功能层,这些要素层现在包含在ESRI Living Atlas中。该地图使用的主要数据源如下:

1、中国国内的数据主要来自丁香园

2、中国之外的数据主要为手工进行更新,并使用地区和地方卫生部门的官方数据进行确认,包括:中国疾控中心(CCDC),香港卫生署澳门政府台湾疾控中心,欧洲疾控中心(ECDC),世界卫生组织(WHO),以及市和州一级的卫生部门。我们在2月1日开始报告的美国,澳大利亚和加拿大的城市案例报告,主要依靠美国疾病预防控制中心(CDC),加拿大政府澳大利亚政府卫生部以及各州或领地的卫生部门。所有手动更新(中国大陆以外)均由JHU的团队进行协调。

HealthMap.org:

https://www.healthmap.org/covid-19/

image.png

该地图汇编了许多可用的政府和新闻来源的数据。该地图具有动画功能,可显示全球COVID-19的进展和扩散。

世界卫生组织(WHO):

https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports

世界卫生组织(WHO)COVID-19 dashboard

image.png

欧洲疾病预防控制中心(ECDC):

https://www.ecdc.europa.eu/en/covid-19-pandemic

欧洲疾病预防控制中心分享有关在欧洲和世界范围内爆发冠状病毒的信息。该网页包含指向交互式地图的链接,这些地图显示了在欧洲和全球范围内确诊的COVID-19病例。

Infection2020.com:

https://infection2020.com/

此特定来源反映了美国当前COVID-19的情况。此页面上使用的数据会经常刷新,并包括按州和县分类的美国案例的细分。

image.png

美国疾病预防控制中心(US CDC):

https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/cases-in-us.html

美国疾病预防控制中心网站提供有关美国COVID-19情况的信息。其中包括表格,图表和地图,显示了疾病的传播情况,以及有关COVID-19疾病的信息页以及CDC如何应对这种大流行。

Global Mapper中的在线资源:

来自约翰霍普金斯大学地图的点数据已添加为Global Mapper中的在线数据源。该数据每天更新,可基于要素服务进行下载。打开在线数据源对话框,然后寻找新的** COVID-19 **来源文件夹即可下载。

image.png

华盛顿大学

https://hgis.uw.edu/virus/

该在线互动地图使用户能够跟踪自2020年1月21日以来全球新型和冠状病毒感染的趋势。该地图由华盛顿大学西雅图分校的人文地理信息系统实验室制作。使用的数据来源从以下渠道获取,并且4小时更新1次:

1. National Health Commission (NHC) of the People’s Republic of China 

2. China’s Provincial & Municipal Health Commission, China’s Provincial & Municipal government database 

3. Public data published from Hongkong, Macau, and Taiwan official channels 

4. World Health Organization (WHO)

 5. Centers for Disease Control and Prevention (CDC) 

6. Public Health Agency of Canada (PHAC)

 7. Baidu

8. the state officals of different states in the U.S. 

9. NBC News

可以在这里下载及时更新的病毒感染数据集(CSV格式)。

image.png

敦卫生与热带医学院

https://vac-lshtm.shinyapps.io/ncov_tracker/

该地图数据主要使用WHO和约翰霍普金斯大学的数据,与其他交互式地图不同的是,添加了SARS/MERS/H1N1/Ebola的对比。

image.png

 中文新冠监控数据资源

在Global Mapper中使用NEXTMap全球高精度DSM/DTM数据

NEXTMap for Global Mapper年度订阅

Intermap和Blue Marble合作,让用户可以直接在Global Mapper中直接访问全球最大的高程数据数据库!
> 即时访问整个地球1.6亿多平方公里的高分辨率NEXTMap高程数据
> 在功能强大的Global Mapper软件中进行详细的地形分析(如生成等高线、流域分析、视线/视域分析、体积计算、填挖分析、飞行录制、地形变化对比等);
> 部分地方可提供1m分辨率的高程数据,具有建筑级别的细节(如下图所示);
> 获取数字表面模型(DSM)和数字地形模型(DTM);
> 按年订阅,低成本,简单;
> NEXTMap高程数据会不断更新,获取最新数据以确保您对项目的信心。

store-intermap-5aa2d51a39b71_uploaded_1537303295561-San+Fran+Screen+Shot+2.png

说明:
>本产品按年收费,如果您具有5个以上用户或是想开通企业账户,可以有相应的折扣,请联系我们
>数据仅限在Global Mapper程序内使用,不能导出以在其他软件包中使用;
>本产品价格不包括Global Mapper许可,如需购买Global Mapper软件,请
联系我们
>高分辨率数据(1m)目前并非在所有地区都可用。1米/6米/10米覆盖范围请见DSM覆盖范围 DTM覆盖范围
>目前NEXTMap World10(10米)为全球覆盖,NEXTMap One(1米)/NEXTMap 6m(6米)为计划全球覆盖,可以按订单进行生产,如需订购实体数据,请联系我们
>本订阅产品与Global Mapper版本v20.0及更高版本兼容。
>订阅包括每个用户每月可访问50,000个map tiles(1个map tiles大致为4Mb数据量,相当于一个月200G左右,对于多数用户来说,这个数据量是完全可以满足需求的)。

数据覆盖范围(持续更新中)

全球DSM覆盖范围(黄色代表1米覆盖,绿色代表6米覆盖,红色代表10米覆盖,10米为全球覆盖)nextmap for global mapper coverage-DSM.png全球DTM覆盖范围(黄色代表1米覆盖,蓝色代表6米覆盖,红色代表10米覆盖)nextmap for global mapper coverage-DTM.png中国及周边地区DSM数据覆盖情况中国及周边DSM覆盖情况.png中国及周边地区DTM数据覆盖情况中国及周边DTM覆盖情况.png

样例
北京6米DSM/DTM效果
北京-6M DSM-DTM-final.jpg
北京城区洪水分析(水面高为50米)洪水淹没分析(50米).png香港维多利亚港周边6米DSM/DTM效果香港DSM-DTM-final.jpg广西桂林6米DSM/DTM效果桂林DSM-DTM6M-final.jpg内蒙古锡林郭勒盟DSM/DTM效果(10米)内蒙古锡林郭勒盟10M-final.jpg

NEXTMap Vs SRTM
以下我们以湖南衡阳地区,缩放到不同的比例尺下,对比NEXTMap与开源的SRTM数据的对比截图:(显示比例尺约为1:74万)(显示比例尺约为1:24万)(显示比例尺约为1:14万)

Global Mapper在线数据源集成USGS 3DEP数据

Global Mapper新的在线数据源提供全美国高分辨率高程数据服务

3D高程计划(3DEP)是USGS发起的一项工作,旨在收集和处理LiDAR数据并将其连同其衍生产品一起公开提供。现在免费提供3DEP高程数据(DEM)以及几个补充栅格图层,可以供Global Mapper 20.0及更高版本的用户使用。3DEP服务由来自许多不同来源的数据组成,其水平分辨率高达1米。

为了说明数据的质量,以下屏幕截图将左侧的3DEP数据与相同覆盖区域的10米国家高程数据集(NED)进行了比较。

Fort George, Castine, Maine
Bradbury Mountain State Park, Maine
Acadia National Park, Maine
Near Lake Arthur, Louisiana
Grand Tetons National Park, Wyoming. Rendered with a Customer Shader
Zion National Park, Utah
Point Loma, San Diego, California. Rendered with the Slope Shader

如果当前使用的是Global Mapper的20.0版本或更高版本,则可以访问“在线数据源”列表中的3DEP数据。导航到“地形数据”部分,然后选择“ USGS 3DEP高程”。

有关3DEP当前状态和未来计划的更多信息,请访问www.usgs.gov/core-science-systems/ngp/3dep

使用Global Mapper进行无人机处理

无人机拥有量的快速增长给一些潜在的飞行员带来了一个有趣的困境。购买了硬件并收集了一些数据后,许多人通常不清楚它们到底可以做什么?在过去的几年中,我参加了几次针对无人机的贸易展览,我经常被问到的一个问题是:“我可以使用Global Mapper做什么?”答案:很多事情。

  • 制定初步飞行规划

在按下启动按钮之前,最好对项目区域进行虚拟勘查。附近有什么可能的障碍物,地形特征是什么,附近有没有建筑物或其他设施可能会有阻碍飞行,覆盖面积是多少?通过将相关数据加载到Global Mapper中并进行一些基本的飞行前分析,可以回答这些问题以及更多问题。软件内嵌的免费在线数据服务包括高分辨率的航空影像、数字高程模型(DEM),航空图和地形图。Global Mapper的绘图工具可用于勾勒项目现场的范围,以确定覆盖范围,并起草初始飞行计划以优化数据采集过程。所有这些数据都可以传输到运行Global Mapper Mobile的iOS或Android设备,以便对飞行计划参数进行现场检查。

Drone1.jpg
Global Mapper中免费提供的在线数据服务包括高分辨率的航空影像,数字高程模型(DEM),航空图和地形图等。
  • 地理图像浏览

无人机的最基本功能之一就是拍照,正如我们将在下面讨论的那样,在有足够重叠的情况下,可以将这些图像处理为3D场景。在继续使用此高级功能之前,可以将图像本身作为像片点加载到Global Mapper中以创建地理相册。通过读取嵌入在图像文件中的坐标值,每张照片的拍摄位置均在地图视图中用相机图标表示。使用Global Mapper的“要素信息”(Feature Info)工具,点击像片点将使用计算机的默认图像查看器显示每张照片。在3D查看器中查看时,相机图标将显示在地面上方,从而显示每张图像拍摄时精确的无人机高度。

Drone2.jpg

可以将图像本身作为像片点加载到Global Mapper中以创建地理相册。通过读取嵌入在图像文件中的坐标值,每张照片的拍摄位置均在地图视图中用相机图标表示。

  • 3D重建

从Global Mapper的19版本开始,Pixels-to-Points工具已集成到可选的LiDAR模块中,该工具可用于分析一系列重叠的图像以创建环境的3D场景。这个强大的组件可识别多张照片中像素的重复特征,并采用摄影测量的基本原理来确定相应表面的三维结构。尽管底层技术原理非常复杂,但用户的体验却非常简单,继承了Global Mapper简单易用的特点。只需加载图像,为相机系统应用必要的设置,如果需要可添加地面控制点,单击“运行”按钮,然后等待其创建高密度点云,并可在需要时同步创建3D模型。像素到点工具的功能将无人机获取的简单图像文件转换为可用于无数3D分析过程的数据。

Drone3.jpg
像素到点工具的功能将无人机获取的简单图像文件转换为可用于无数3D分析过程的数据集。
  • 正射影像制作

上述点云生成过程的一个副产品是创建正射影像的选项。正射影像定义为栅格图层,其中每个像素的坐标在地理上都是正确的,正射影像是通过将点云中的RGB值网格化而生成的。鉴于其内在的准确性,此2D图像层可用于精确测量或用作数字化或绘图操作的基础图层。

  • DTM创建和地形分析

如前所述,像素到点功能生成的点云可作为Global Mapper中众多分析过程的数据源。与任何未处理的数据集一样,在着手任何有意义的工作流程之前,需要进行一些质量检查,清理和处理。幸运的是,该软件提供了大量的编辑和过滤选项,包括噪声点去除、空间裁剪、地面点识别和自动重分类。分类出代表地面的点后,将使用网格内插工具来创建数字地形模型(DTM),该模型是描绘地面的3D栅格图层。反过来,此地形层可用于创建自定义等高线、计算体积、划定分水岭、进行视线/视域分析,以及在有先前创建的DTM情况下,则可以进行地形变化检测。

Drone4.jpg
Global Mapper可以从点云数据生成数字地形模型(DTM)
  • 视频回放

除了捕获静止图像外,大多数无人机还配备了必要的硬件来记录视频。除了简单的娱乐用途之外,此功能还适用于建筑物或资产检查,战略侦察,林业检查以及在其他需要远程视角的其他情况下使用。Global Mapper包括一个嵌入式视频播放器,它将在地图窗口中显示无人机的相应位置的同时播放此录像。位置的确定是根据飞行过程中记录的轨迹文件中记录的每个顶点的时间戳得出的。将该文件加载为线路特征并将其与相应的视频文件关联后,可从Digitizer的右键菜单中启动播放。

  • LiDAR处理

不久之前,由于所需设备的尺寸和重量,人们普遍接受激光雷达的采集只能使用有人驾驶飞机进行。这个简单的事实导致了LiDAR收集过程的高成本和物流方面的挑战。如今,LiDAR设备的小型化已达到许多大型无人机的有效负载能力之内。鉴于飞机的飞行范围有限,无人机收集的LiDAR仅适用于小型的局部项目,但是它确实允许频繁地重新飞行项目地点,因此非常适合进行变化检测。Global Mapper以及随附的LiDAR模块提供了用于处理LiDAR数据的多种工具。如前所述,在创建用于地形分析的表面模型之前,可以对点进行过滤和编辑。与摄影测量创建的点云数据相比,LiDAR提供了更完整的非地面特征(如建筑物,电力线和树木)的三维表示。LiDAR模块提供了一组用于识别、重新分类点云数据和提取这些特征为相应矢量对象的工具。

Drone5.jpg
Global Mapper LiDAR模块提供了一组用于识别、重新分类和提取这些特征作为矢量对象的工具

从根本上说,无人机和地图有很多共同点。两者的目的都是为了提供对感兴趣区域的遥远的感知,并使我们能够看到数据中的空间分布和模式。因此,无人机的主要功能之一就是提供可用于创建地图和其他空间数据集的数据。Global Mapper非常适合此类工作流程,它提供了可供无人机操作员使用的大量工具。

(原文:David McKittrick,编译:陈春华)

LiDAR点云 & 摄影测量点云(PhoDAR)

MeshCreation-1024x534.png
使用Global Mapper的“像素到点”工具创建的3D mesh 显示在2D和3D视图中

虽然LiDAR和PhoDAR都是3D点云格式,但是创建每种格式的过程完全不同。其采集(生成)过程的性质决定了数据的结构特征及其对特定应用的适用性。

在本篇博客文章中,我们介绍了两种采集方法之间的差异,以及其理想用途之间的一些不同。

iitsec-LiDAR-11032017-1024x594.png
截图显示了Global Mapper中常规LiDAR数据以高程进行可视化的效果
LiDAR – 优势

  • 主动采集过程

点云中的每个3D点都是实时采集和处理的。

  • 多次回波数据

每个点都包含一系列有用的属性数据,包括回波强度,回波计数和分类信息(后期处理添加)。

  • 数据共享

数据结构已经标准化,为数据共享和互操作性提供了最佳条件。

  • 大区域测量

安装在飞机上的扫描仪可以相对较快地测量大面积的地理区域。

  • 紧凑型设备

与早期的LiDAR硬件不同,扫描仪现在相对紧凑,甚至可以安装在无人机上。

  • 地面(地形)探测

LiDAR可以穿透树叶和类似的障碍物,从而提供目标区域的完整3D表示。即使在森林茂密的地区,也可以进行地面探测。

  • 快速发展的技术

例如,Geiger模式LiDAR(相对于传统的linear模式LIDAR)可以提供100 / sqm或更高的点密度。

  • 精确性

这些点在理论上更准确,尤其是其高程值。

  • DTM生成

LiDAR是生成数字地形模型的理想之选,因为与摄影测量法不同,LiDAR可以“穿透”到地面。

LiDAR – 不足

  • 高成本

传统的激光雷达需要有人驾驶飞机来容纳必要的硬件。

  • 对飞行条件的敏感性

LiDAR采集需要极佳的飞行条件。飞机的高度和速度也会影响点密度。

  • 异常识别较差

原始LiDAR无法识别数据中的异常(例如飞行路径下方的鸟类)。

  • 处理不一致

遇到被错误分类的公开提供的LiDAR文件并不少见。

ptp-pointcloud-to-mesh-small-1024x525.jpg
左侧为摄影测量生成的点云,右侧为该基于该点云创建的3D模型
PhoDAR – 优势

  • 技术门槛低

这是一种使用成本低至万元的硬件创建点云的更便捷的方法。

  • 按需&多样化的采集方式

可以在相对较小的区域内按需采集数据,进行最少的预先采集规划。

  • 更高的点云密度

点密度通常比传统的LiDAR大很多。

  • 数据可分类

摄影测量点云虽然本身不是LiDAR,但可以应用分类,并且可以导出到las或laz文件。

  • 栅格赋色的点云

每个点都会自动继承相应图像的颜色。

  • DSM生成

因为它无法像LiDAR一样穿透植被,因此非常适合生成数字表面模型。

PhoDAR – 不足

  • 需要有特征要素(地物)

从图像获取点云需要在相应的区域具有明显的可见特征。

  • 要求表面纹理具有多样性

当图像的表面纹理缺乏多样性(例如沙漠地区或大型停车场的表面)时,摄影点云的生成效果不佳。

  • 需要充足的光线

与LiDAR不同,摄影测量法取决于充足的环境光线。生成点云需要清晰的图像,因此在弱光照条件下拍摄图像并不理想。

  • 不宜进行地表探测

摄影无法像LiDAR一样“穿透”树冠。

  • 阴影和天空不起作用

点云生成不适用于包含大阴影或大量天空的图像。

  • 精度取决于地面控制

除非在处理阶段使用了地面控制点,否则水平精度和高程值将不那么准确。

  • 覆盖范围通常有限

摄影测量点云的生成不适用于大面积覆盖区域。

  • 颜色不一致

由于各个图像色彩的变化(不平衡),整个点云表面的色彩通常不一致。

  • 需要更多的清理工作

反射性表面有时会在数据中引起更多的噪声点或异常,这就需要进行手动删除。电力线等更精细的要素可能不会像在LiDAR数据中那样显示。

LiDAR的理想用途

LiDAR是采集更大面积和更精细细节(例如电力线,管道和物体边缘)的数据的理想选择。它也是创建数字地形模型(DTM)的理想选择,因为传感器可以穿透植被,从而可以采集真实的地面点。

PhoDAR(摄影测量点云)的理想用途

摄影测量法是测量具有较少植被的较小区域的理想选择。由于摄影测量法无法像LiDAR那样穿透植被,因此通常更适合于生成数字表面模型,而不是地形模型。

适合LiDAR和摄影测量的理想软件

无论选择哪种点云生成方法,都可以使用 Global Mapper 和 LiDAR模块 来高效地处理成果数据。其广泛的编辑、可视化和分析工具的包括点云编辑和过滤、DTM或DSM创建、特征提取、等高线生成、体积计算等。

【2019第一期Global Mapper LiDAR培训会】成功举办

2019第一期Global Mapper LiDAR培训会

2019年10月17日,由北京易凯图科技有限公司举办的2019年“第一期Global Mapper LiDAR培训班”在南京玄武湖畔江苏辰茂新世纪大酒店成功举行,本次活动吸引了来自北京、天津、山东、江苏、河南、安徽、新疆、辽宁、黑龙江、四川、湖北等省份近30位参与者。此次培训由Blue Marble Geographics的技术支持团队主管Sam Knight主讲,易凯图辅助进行了翻译。

GM培训照片.jpg

一天的培训课程详细讲解了LiDAR数据导入,点云可视化、点云编辑,Pixels-to-Points工具,自动分类(噪声、建筑物、植被、电力线),手工分类,要素自动提取,TIN/DEM/DSM生成、等高线生成,流域分析、变化检测等功能,参与者同步在电脑上进行动手操作,最后回答了参与者的问题。此次培训内容非常细致,样例数据十分丰富,取得了很好的效果,受到了参与者的深度好评,一致表示Global Mapper是一款非常好的产品,将在后面的项目中应用并向同行推荐。

lidar模块.jpg

 北京易凯图科技有限公司作为Blue Marble Geographics在中国的唯一合作伙伴,将以本次培训为契机,不断提升公司技术技术实力,并计划推出软件中文版和陆续在国内开展相应的中文培训服务,敬请关注。

Pixels-to-Points™:从无人机图像轻松生成点云

Global Mapper v19引入的新的像素到点工具使用摄影测量原理,从重叠图像生成高密度点云。它使LiDAR模块成为已经功能很强大的的必备Global Mapper扩展功能,尤其是对于无人机专家而言。

 下面介绍的是我们的南美和中美洲代理商EngeSat使用该工具处理无人机影像的一个实例,系列屏幕截图说明了使用像素到点工具创建点云的简单分步过程,以及使用其他 LiDAR 模块工具进行一些基本点云编辑的过程。

point-cloud.jpg
EngeSat 的 Laurent Martin 使用 LiDAR 模块版本 19 中新的像素到点™工具生成的点云。LiDAR 模块工具分析了 192 张高分辨率无人机图像,以创建此高密度点云。

1. 将无人机图像加载到LiDAR模块中

1.png
加载到 LiDAR 模块中的影像必须包含可重叠的信息。”像素到点”工具分析相邻图像中可识别对象之间的关系,以确定相应表面的三维坐标。
2.png
UAV 的飞行路径和每张照片的位置可以通过叠加项目区域的栅格图像来查看。

2. 从加载的图像计算点云

在此特定示例中选择了 192 个高分辨率图像。该工具将给出估计的完成时间,这取决于图像的大小和图像的数量。
“Calculating Cloud/Mesh “对话框显示图像的统计信息,因为图像由像素到点工具进行分析和拼接在一起。
该过程完成后,将弹出一个警报窗口。

3. 查看生成的点云

生成的点云的新图层现在位于图层列表中。
生成的正射影像的局部放大效果
从 192 个图像生成的新点云最终结果的特写。
生成的点云的 3D 视图。
生成的点云的 3D 视图。
使用路径断面工具的点云断面视图

4. 对点云进行分类

12-1024x548.png
可以使用 LiDAR 模块工具自动或手动重新分类点。在这里,点云被重新分类为主要是地面点。

5. 从点云创建高程网格和等高线

选择点云图层后,可以通过单击”创建高程网格”按钮生成数字地形模型。
使用路径剖面工具的数字地形模型的横截面视图
只需单击”创建等高线”按钮,即可从数字地形模型生成等高线。

快速简便的过程

从该示例可以看出,只需几步,Laurent 就能从 192 个图像中创建高密度点云,重新分类这些点,并创建数字地形模型并生成等高线。

Global Mapper LiDAR模块 您知多少?

Global Mapper软件相信大家都不陌生,从V15版本引入的LiDAR模块如今在全球的LiDAR处理领域已是一支非常重要的力量,特别是V19版本新推出的Pixel-to-Points工具可以说给Global Mapper产品功能带来了革命性的变化,Global Mapper LiDAR模块继承了Global Mapper标准版高性价比的特点, 它的成本只是同类软件产品的一小部分,对于使用或管理地面或机载激光雷达以及其他点云数据集的任何人来说都是必备的工具!


LiDAR模块概述

Global Mapper LiDAR模块是该软件的可选增强功能,可提供众多先进的LiDAR处理工具,包括Pixels-to-Points™,用于从一系列图像中创建摄影测量点云,自动点云分类,自动提取建筑物,树木和电力线,断面查看和点云编辑,自定义数字化或提取三维线和面要素,更快的表面生成,LiDAR质量控制,以及更多。


LiDAR模块提供的主要功能

  • Pixels-to-Points工具,用于从重叠图像创建高密度点云,同步生成正射镶嵌影像和3D Mesh
  • 方便的LiDAR工具栏,可轻松访问关键的编辑和分析功能
  • 多个网格化选项,可实现更快的DSM或DTM生成
  • 访问包含十亿或更多点的点云文件
  • 自动点分类工具,可自动区分未分类层中的建筑物,地面,植被和电力线以及地上公用电缆
  • 要素提取功能可自动创建3D建筑物俯视轮廓,树木和电力线
  • 使用Global Mapper的路径断面工具在垂直透视图中查看和编辑点云
  • 使用垂直断面功能进行3D数字化或自定义特征提取
  • 高级过滤选项,可有效删除错误或不需要的点
  • 可定制的噪声点检测和重新分类
  • 用于简化工作流程的LiDAR脚本命令
  • 从底层图像或网格图层进行点着色
  • 用于使用地面控制点校正点云高程的LiDAR QC工具
  • 多种点云可视化选项,包括分类、强度、高程、RGB和点密度
  • 支持报告LiDAR统计数据
  • 支持导入和导出最常见的点云格式
  • 支持NIR(近红外)点属性,可选择创建NDVI或NDWI网格
  • LiDAR排序优化,提高显示和分析速度。

Pixels-to-Points™

这款功能强大的工具随着LiDAR模块的19版本推出,可以从一系列重叠图像(例如无人机收集的带地理标记的图像)中创建像LiDAR点云一样的高密度3D点云。使用模块的附加功能,随后可以处理此点云以识别和重新分类地面,建筑物和其他常见分类类型,并根据需要过滤和编辑数据。

将图像转换为点云

点云生成的摄影测量原理

采用摄影测量原理(基于影像进行测量),目前处于测试版的Pixels-to-Points工具分析相邻图像中可识别物体之间的关系,以确定相应表面的三维坐标。作为点生成过程的副产品,Pixels-to-Points工具可以通过对每个点中的RGB值进行网格化来创建正射校正图像,以及具有照片级逼真纹理的3D Mesh。

像素到点工具的工作原理

创建点云的过程首先将图像简单加载到“像素到点”对话框中。为获得最佳效果,建议至少60%重叠并均匀分布从不同角度拍摄的照片。可以预览单个图像,并且可以移除最终点云不需要的图像。然后可以应用各种设置来确定输出质量,分析方法等。最后,可以可选地添加地面控制点以调整点云的水平和垂直定位。处理完成后,点云将自动添加到当前工作空间。在导出到任何支持的点云格式(包括LAS和LAZ)之前,可以对其进行进一步处理或编辑。

Pixels-to-Points过程占用大量内存,可能需要几个小时才能处理完,具体取决于输入数据和质量设置。建议在具有至少16GB 内存的专用计算机上执行此过程。Pixels-to-Points工具还需要64位操作系统。


自动重新分类

基于LiDAR文件或点云的几何属性和其他特性,LiDAR模块的自动重分类工具能够准确识别并自动重新分类代表重要点要素类型的点。首先是识别地面点,用于创建DTM或裸地模型。在剩余的地面以上点云内,可以应用特定算法来识别和重新分类高植被、建筑物、电力线或公用电缆。Global Mapper LiDAR模块具有改进的分类算法,可通过“地面分类”对话框中的控制参数过滤出可能的建筑物,树木和电力线等要素。具有多核的机器将实现更快的地面点自动分类。用户还可以对所选择的点执行自动分类以加速处理。

1544653398712630.jpg
自动分类前的测试数据
lidar-after-auto-classify-building-and-tree_s.jpg
建筑物和树木的自动分类之后
lidar-powerlines_s.jpg
电力线的分类

手动重新分类

使用七种不同的分类类型快速重新分类点。

  • 地面点
  • 高植被点
  • 中等植被点
  • 低植被点
  • 建筑物点
  • 传输塔点
  • 水体点
  • 噪声点
  • 模型关键点

有效的噪声消除

针对LiDAR用户的主要关注点,Global Mapper LiDAR模块提供了一种有效且高效的方法来消除点云数据中的噪声。这个强大的过滤工具可以重新分类或自动删除超出本地区域内超出地面阈值的规定高度或海拔高程的任何点。


LiDAR质量控制

LiDAR模块提供了一系列用于提高点云质量的工具。点可以手动或自动重新分类,裁剪到感兴趣区域的范围,并且可以自动识别和去除噪声点。LiDAR模块提供了一种用于验证点云垂直精度的工具。使用测量的地面控制点,可以检查并调整整个层中的高程值(如有必要)。


高级LiDAR过滤选项

从“配置窗口”中的“选项”选项卡访问LiDAR过滤选项,以便按分类和/或回波类型轻松过滤。并在导出、网格化和从点云中选择时按类别、高程、颜色、扫描角度、源ID、强度、地上高度、NDVI和NDWI(如果可用)和回波类型过滤LiDAR点。


自动提取建筑物,树木和输电线

特征提取允许用户渲染建筑物,树木和电力线,以更好地可视化LiDAR数据。Global Mapper Lidar模块使用户能够轻松快速地进行特征提取,将适当分类的激光雷达点渲染为2D和3D特征对象。这些强大的数据将帮助那些希望用逼真的代表性对象创建更好,更精确的地球模型的用户。


自定义3D数字化和要素提取

使用新的垂直路径剖面功能,垂直于通过点云的定义路径创建一系列自定义间隔横截面视图。可以在每个连续的断面视图内以规则的间隔快速准确地放置3D顶点。序列完成后,使用Global Mapper的标准数字化工具创建3D线性或区域特征。这是用于从高分辨率点云数据描绘路缘石,公用电缆,管道,排水沟或建筑屋顶线的理想工具。


更快的网格化功能

借助强大的网格技术,可以更快,更灵活地创建高程表面,包括通过分级以及其他技术进行智能抽取。


路径断面编辑

该模块还包括直接在路径断面查看器中利用LiDAR工具栏的功能,以便更快地管理、编辑和重新分类点。该模块包括两个选择选项,用于在“路径断面”查看器中选择点,通过单击和拖动方法进行选择,或通过绘制自定义多边形来选择点。

1544653546168124.jpg

结束语

随着LiDAR数据应用快速增长,LiDAR模块通过一系列强大的点云处理工具和卓越的地形创建功能,对Global Mapper的标准版本进行了补充。Global Mapper LiDAR模块继承了Global Mapper标准版高性价比的特点,新的Pixel-to-Points工具可以说是产品功能革命性的变化,并将大大扩展Global Mapper相关领域的应用空间。