Global Mapper LiDAR模块v22版的【5大新功能】

LiDAR Module®Global Mapper®的可选模块,它提供了先进的点云处理工具,包括Pixels to Points®,可使用重叠的无人机图像创建摄影测量点云,自动和手动点云分类以及特征提取,水体置平等。

LiDAR Module的最新版本包括几个新工具,以及对许多现有功能的改进。本文重点介绍前五大新功能:

  • 新的Terrain Paint工具

Terrain Painting是一组地形编辑工具,可提供以交互方式修改网格化高程数据集(DEM)的高程值的功能。通过使用简单的绘图工具,激光雷达模块的这一创新功能可用于填补DEM中的空白,平滑DEM、升高或降低定义区域内的高程或设置为特定的高值。以这种方式动态编辑DEM图层对于场址规划,建模以及清理或改进传感器生成的DEM数据很有用。该工具可用于所有类型的网格化DEM据集,包括DSM和DTM,测深数据集,激光雷达衍生的地形数据等。

“填充间隙”操作用于填充地形的缺失区域。
“Smooth Terrain – Average(平滑地形-取平均)”操作用于创建更清洁的地形表面。
在这个示例中,“设置地形高度”工具用于创建道路的模拟路径。羽化效果会产生向周围地形的斜坡过渡。
  • 改进的建筑物分类算法

激光雷达模块包含丰富的自动特征识别和点云重新分类工具。底层算法在局部上下文中分析点云的几何结构,以查找与规定格式匹配的模式。具体选项包括对代表高植被或树木,电线,电线杆和建筑物的点进行重新分类。在版本22中,已更新了用于识别点云中建筑物的算法,以在处理来自任何来源的点云数据时提供对人造结构的更准确反映。

lidar7.png
橙色点为自动分类的建筑物点。
  • 改善建筑物提取效果,具有更好的3D形状简化

对点云进行分类后,可以创建单个矢量特征,以反映对象的三维特征。例如,可以将分类为电力线点的那些点进行连接来自动生成3D线特征。更有用的特征提取是创建表示建筑物的3D多边形。在版本22中,添加了几个新的设置和选项,并且矢量化算法已得到显著改进,以提供更准确的建筑物轮廓。现在可以创建单独的平面,从而可以更精确地表示建筑物的特定结构,同时更新了简化算法,从而使屋顶和墙壁更加整洁。

lidar8.png
从点云提取的复杂建筑特征为3D多边形。
  • 一个新的选项,可以在使用“Pixels to Points (像素到点)”流程时生成流程摘要报告

像素到点工具可以说是激光雷达模块最强大的组件之一。该工具直接使用无人机采集的重叠图像,通过摄影测量法进行三维重建。激光雷达模块的v22版本对此功能进行了一些改进,其中最值得注意的是新的“后处理报告”,该报告简要总结了数据生成过程中的相关信息。该报告包括输入数据、处理时间、输出数据、质量评估的简要情况,以及各个输出层的可视化表示。该报告为HTML格式,将在您的默认Web浏览器中自动打开,可从该报告中另存为PDF文件。

lidar9.png

Pixels to Points功能处理完成后生成的报告的一部分

  • 两种新的LiDAR显示(绘制)模式

Global Mapper可以对3D lidar或其他点云数据进行多种方式的渲染,以反映各种点属性,例如高程、回波强度和点云分类信息等。最新版本引入了两种新的激光雷达渲染(着色)模式:

按源图层着色——使用此选项,可以对每个已加载的点云层应用不同的颜色,这是一种清晰区分工作空间中单独点云图层的简单方法。可以在图层的Lidar Display 选项卡中为该图层选择特定颜色。

lidar10.png

按扫描角度着色——在此模式下,激光雷达点使用扫描角度属性进行着色,其值的范围可能为-90到90度。点的实际颜色由在工作区中选择的“着色器选项( Shader Option)”确定。

lidar11.png

如果您不熟悉Global MapperLiDAR模块,您可以下载2周的免费试用。如果您想了解该软件如何解决您独特的需求,可以联系我们进行演示或试验。

使用Global Mapper进行无人机处理

无人机拥有量的快速增长给一些潜在的飞行员带来了一个有趣的困境。购买了硬件并收集了一些数据后,许多人通常不清楚它们到底可以做什么?在过去的几年中,我参加了几次针对无人机的贸易展览,我经常被问到的一个问题是:“我可以使用Global Mapper做什么?”答案:很多事情。

  • 制定初步飞行规划

在按下启动按钮之前,最好对项目区域进行虚拟勘查。附近有什么可能的障碍物,地形特征是什么,附近有没有建筑物或其他设施可能会有阻碍飞行,覆盖面积是多少?通过将相关数据加载到Global Mapper中并进行一些基本的飞行前分析,可以回答这些问题以及更多问题。软件内嵌的免费在线数据服务包括高分辨率的航空影像、数字高程模型(DEM),航空图和地形图。Global Mapper的绘图工具可用于勾勒项目现场的范围,以确定覆盖范围,并起草初始飞行计划以优化数据采集过程。所有这些数据都可以传输到运行Global Mapper Mobile的iOS或Android设备,以便对飞行计划参数进行现场检查。

Drone1.jpg
Global Mapper中免费提供的在线数据服务包括高分辨率的航空影像,数字高程模型(DEM),航空图和地形图等。
  • 地理图像浏览

无人机的最基本功能之一就是拍照,正如我们将在下面讨论的那样,在有足够重叠的情况下,可以将这些图像处理为3D场景。在继续使用此高级功能之前,可以将图像本身作为像片点加载到Global Mapper中以创建地理相册。通过读取嵌入在图像文件中的坐标值,每张照片的拍摄位置均在地图视图中用相机图标表示。使用Global Mapper的“要素信息”(Feature Info)工具,点击像片点将使用计算机的默认图像查看器显示每张照片。在3D查看器中查看时,相机图标将显示在地面上方,从而显示每张图像拍摄时精确的无人机高度。

Drone2.jpg

可以将图像本身作为像片点加载到Global Mapper中以创建地理相册。通过读取嵌入在图像文件中的坐标值,每张照片的拍摄位置均在地图视图中用相机图标表示。

  • 3D重建

从Global Mapper的19版本开始,Pixels-to-Points工具已集成到可选的LiDAR模块中,该工具可用于分析一系列重叠的图像以创建环境的3D场景。这个强大的组件可识别多张照片中像素的重复特征,并采用摄影测量的基本原理来确定相应表面的三维结构。尽管底层技术原理非常复杂,但用户的体验却非常简单,继承了Global Mapper简单易用的特点。只需加载图像,为相机系统应用必要的设置,如果需要可添加地面控制点,单击“运行”按钮,然后等待其创建高密度点云,并可在需要时同步创建3D模型。像素到点工具的功能将无人机获取的简单图像文件转换为可用于无数3D分析过程的数据。

Drone3.jpg
像素到点工具的功能将无人机获取的简单图像文件转换为可用于无数3D分析过程的数据集。
  • 正射影像制作

上述点云生成过程的一个副产品是创建正射影像的选项。正射影像定义为栅格图层,其中每个像素的坐标在地理上都是正确的,正射影像是通过将点云中的RGB值网格化而生成的。鉴于其内在的准确性,此2D图像层可用于精确测量或用作数字化或绘图操作的基础图层。

  • DTM创建和地形分析

如前所述,像素到点功能生成的点云可作为Global Mapper中众多分析过程的数据源。与任何未处理的数据集一样,在着手任何有意义的工作流程之前,需要进行一些质量检查,清理和处理。幸运的是,该软件提供了大量的编辑和过滤选项,包括噪声点去除、空间裁剪、地面点识别和自动重分类。分类出代表地面的点后,将使用网格内插工具来创建数字地形模型(DTM),该模型是描绘地面的3D栅格图层。反过来,此地形层可用于创建自定义等高线、计算体积、划定分水岭、进行视线/视域分析,以及在有先前创建的DTM情况下,则可以进行地形变化检测。

Drone4.jpg
Global Mapper可以从点云数据生成数字地形模型(DTM)
  • 视频回放

除了捕获静止图像外,大多数无人机还配备了必要的硬件来记录视频。除了简单的娱乐用途之外,此功能还适用于建筑物或资产检查,战略侦察,林业检查以及在其他需要远程视角的其他情况下使用。Global Mapper包括一个嵌入式视频播放器,它将在地图窗口中显示无人机的相应位置的同时播放此录像。位置的确定是根据飞行过程中记录的轨迹文件中记录的每个顶点的时间戳得出的。将该文件加载为线路特征并将其与相应的视频文件关联后,可从Digitizer的右键菜单中启动播放。

  • LiDAR处理

不久之前,由于所需设备的尺寸和重量,人们普遍接受激光雷达的采集只能使用有人驾驶飞机进行。这个简单的事实导致了LiDAR收集过程的高成本和物流方面的挑战。如今,LiDAR设备的小型化已达到许多大型无人机的有效负载能力之内。鉴于飞机的飞行范围有限,无人机收集的LiDAR仅适用于小型的局部项目,但是它确实允许频繁地重新飞行项目地点,因此非常适合进行变化检测。Global Mapper以及随附的LiDAR模块提供了用于处理LiDAR数据的多种工具。如前所述,在创建用于地形分析的表面模型之前,可以对点进行过滤和编辑。与摄影测量创建的点云数据相比,LiDAR提供了更完整的非地面特征(如建筑物,电力线和树木)的三维表示。LiDAR模块提供了一组用于识别、重新分类点云数据和提取这些特征为相应矢量对象的工具。

Drone5.jpg
Global Mapper LiDAR模块提供了一组用于识别、重新分类和提取这些特征作为矢量对象的工具

从根本上说,无人机和地图有很多共同点。两者的目的都是为了提供对感兴趣区域的遥远的感知,并使我们能够看到数据中的空间分布和模式。因此,无人机的主要功能之一就是提供可用于创建地图和其他空间数据集的数据。Global Mapper非常适合此类工作流程,它提供了可供无人机操作员使用的大量工具。

(原文:David McKittrick,编译:陈春华)

LiDAR点云 & 摄影测量点云(PhoDAR)

MeshCreation-1024x534.png
使用Global Mapper的“像素到点”工具创建的3D mesh 显示在2D和3D视图中

虽然LiDAR和PhoDAR都是3D点云格式,但是创建每种格式的过程完全不同。其采集(生成)过程的性质决定了数据的结构特征及其对特定应用的适用性。

在本篇博客文章中,我们介绍了两种采集方法之间的差异,以及其理想用途之间的一些不同。

iitsec-LiDAR-11032017-1024x594.png
截图显示了Global Mapper中常规LiDAR数据以高程进行可视化的效果
LiDAR – 优势

  • 主动采集过程

点云中的每个3D点都是实时采集和处理的。

  • 多次回波数据

每个点都包含一系列有用的属性数据,包括回波强度,回波计数和分类信息(后期处理添加)。

  • 数据共享

数据结构已经标准化,为数据共享和互操作性提供了最佳条件。

  • 大区域测量

安装在飞机上的扫描仪可以相对较快地测量大面积的地理区域。

  • 紧凑型设备

与早期的LiDAR硬件不同,扫描仪现在相对紧凑,甚至可以安装在无人机上。

  • 地面(地形)探测

LiDAR可以穿透树叶和类似的障碍物,从而提供目标区域的完整3D表示。即使在森林茂密的地区,也可以进行地面探测。

  • 快速发展的技术

例如,Geiger模式LiDAR(相对于传统的linear模式LIDAR)可以提供100 / sqm或更高的点密度。

  • 精确性

这些点在理论上更准确,尤其是其高程值。

  • DTM生成

LiDAR是生成数字地形模型的理想之选,因为与摄影测量法不同,LiDAR可以“穿透”到地面。

LiDAR – 不足

  • 高成本

传统的激光雷达需要有人驾驶飞机来容纳必要的硬件。

  • 对飞行条件的敏感性

LiDAR采集需要极佳的飞行条件。飞机的高度和速度也会影响点密度。

  • 异常识别较差

原始LiDAR无法识别数据中的异常(例如飞行路径下方的鸟类)。

  • 处理不一致

遇到被错误分类的公开提供的LiDAR文件并不少见。

ptp-pointcloud-to-mesh-small-1024x525.jpg
左侧为摄影测量生成的点云,右侧为该基于该点云创建的3D模型
PhoDAR – 优势

  • 技术门槛低

这是一种使用成本低至万元的硬件创建点云的更便捷的方法。

  • 按需&多样化的采集方式

可以在相对较小的区域内按需采集数据,进行最少的预先采集规划。

  • 更高的点云密度

点密度通常比传统的LiDAR大很多。

  • 数据可分类

摄影测量点云虽然本身不是LiDAR,但可以应用分类,并且可以导出到las或laz文件。

  • 栅格赋色的点云

每个点都会自动继承相应图像的颜色。

  • DSM生成

因为它无法像LiDAR一样穿透植被,因此非常适合生成数字表面模型。

PhoDAR – 不足

  • 需要有特征要素(地物)

从图像获取点云需要在相应的区域具有明显的可见特征。

  • 要求表面纹理具有多样性

当图像的表面纹理缺乏多样性(例如沙漠地区或大型停车场的表面)时,摄影点云的生成效果不佳。

  • 需要充足的光线

与LiDAR不同,摄影测量法取决于充足的环境光线。生成点云需要清晰的图像,因此在弱光照条件下拍摄图像并不理想。

  • 不宜进行地表探测

摄影无法像LiDAR一样“穿透”树冠。

  • 阴影和天空不起作用

点云生成不适用于包含大阴影或大量天空的图像。

  • 精度取决于地面控制

除非在处理阶段使用了地面控制点,否则水平精度和高程值将不那么准确。

  • 覆盖范围通常有限

摄影测量点云的生成不适用于大面积覆盖区域。

  • 颜色不一致

由于各个图像色彩的变化(不平衡),整个点云表面的色彩通常不一致。

  • 需要更多的清理工作

反射性表面有时会在数据中引起更多的噪声点或异常,这就需要进行手动删除。电力线等更精细的要素可能不会像在LiDAR数据中那样显示。

LiDAR的理想用途

LiDAR是采集更大面积和更精细细节(例如电力线,管道和物体边缘)的数据的理想选择。它也是创建数字地形模型(DTM)的理想选择,因为传感器可以穿透植被,从而可以采集真实的地面点。

PhoDAR(摄影测量点云)的理想用途

摄影测量法是测量具有较少植被的较小区域的理想选择。由于摄影测量法无法像LiDAR那样穿透植被,因此通常更适合于生成数字表面模型,而不是地形模型。

适合LiDAR和摄影测量的理想软件

无论选择哪种点云生成方法,都可以使用 Global Mapper 和 LiDAR模块 来高效地处理成果数据。其广泛的编辑、可视化和分析工具的包括点云编辑和过滤、DTM或DSM创建、特征提取、等高线生成、体积计算等。

【2019第一期Global Mapper LiDAR培训会】成功举办

2019第一期Global Mapper LiDAR培训会

2019年10月17日,由北京易凯图科技有限公司举办的2019年“第一期Global Mapper LiDAR培训班”在南京玄武湖畔江苏辰茂新世纪大酒店成功举行,本次活动吸引了来自北京、天津、山东、江苏、河南、安徽、新疆、辽宁、黑龙江、四川、湖北等省份近30位参与者。此次培训由Blue Marble Geographics的技术支持团队主管Sam Knight主讲,易凯图辅助进行了翻译。

GM培训照片.jpg

一天的培训课程详细讲解了LiDAR数据导入,点云可视化、点云编辑,Pixels-to-Points工具,自动分类(噪声、建筑物、植被、电力线),手工分类,要素自动提取,TIN/DEM/DSM生成、等高线生成,流域分析、变化检测等功能,参与者同步在电脑上进行动手操作,最后回答了参与者的问题。此次培训内容非常细致,样例数据十分丰富,取得了很好的效果,受到了参与者的深度好评,一致表示Global Mapper是一款非常好的产品,将在后面的项目中应用并向同行推荐。

lidar模块.jpg

 北京易凯图科技有限公司作为Blue Marble Geographics在中国的唯一合作伙伴,将以本次培训为契机,不断提升公司技术技术实力,并计划推出软件中文版和陆续在国内开展相应的中文培训服务,敬请关注。

Pixels-to-Points™:从无人机图像轻松生成点云

Global Mapper v19引入的新的像素到点工具使用摄影测量原理,从重叠图像生成高密度点云。它使LiDAR模块成为已经功能很强大的的必备Global Mapper扩展功能,尤其是对于无人机专家而言。

 下面介绍的是我们的南美和中美洲代理商EngeSat使用该工具处理无人机影像的一个实例,系列屏幕截图说明了使用像素到点工具创建点云的简单分步过程,以及使用其他 LiDAR 模块工具进行一些基本点云编辑的过程。

point-cloud.jpg
EngeSat 的 Laurent Martin 使用 LiDAR 模块版本 19 中新的像素到点™工具生成的点云。LiDAR 模块工具分析了 192 张高分辨率无人机图像,以创建此高密度点云。

1. 将无人机图像加载到LiDAR模块中

1.png
加载到 LiDAR 模块中的影像必须包含可重叠的信息。”像素到点”工具分析相邻图像中可识别对象之间的关系,以确定相应表面的三维坐标。
2.png
UAV 的飞行路径和每张照片的位置可以通过叠加项目区域的栅格图像来查看。

2. 从加载的图像计算点云

在此特定示例中选择了 192 个高分辨率图像。该工具将给出估计的完成时间,这取决于图像的大小和图像的数量。
“Calculating Cloud/Mesh “对话框显示图像的统计信息,因为图像由像素到点工具进行分析和拼接在一起。
该过程完成后,将弹出一个警报窗口。

3. 查看生成的点云

生成的点云的新图层现在位于图层列表中。
生成的正射影像的局部放大效果
从 192 个图像生成的新点云最终结果的特写。
生成的点云的 3D 视图。
生成的点云的 3D 视图。
使用路径断面工具的点云断面视图

4. 对点云进行分类

12-1024x548.png
可以使用 LiDAR 模块工具自动或手动重新分类点。在这里,点云被重新分类为主要是地面点。

5. 从点云创建高程网格和等高线

选择点云图层后,可以通过单击”创建高程网格”按钮生成数字地形模型。
使用路径剖面工具的数字地形模型的横截面视图
只需单击”创建等高线”按钮,即可从数字地形模型生成等高线。

快速简便的过程

从该示例可以看出,只需几步,Laurent 就能从 192 个图像中创建高密度点云,重新分类这些点,并创建数字地形模型并生成等高线。

Global Mapper LiDAR 模块工具/功能Top5

由于预期激光雷达和其他点云数据集的可用性和应用将日益增加,Global Mapper从15版本中就首次加入了激光雷达模块(Global Mapper的一个附加组件)。在过去五年中,这一流行的组件发展迅速,并提供了一系列强大的工具。

 在本期博客中,我们将重点介绍 LiDAR 模块中最重要的五个工具和功能,包括提取矢量要素、从无人机图像生成点云、LiDAR 数据滤波以及生成 3D meshes或模型。

1.   Pixels-to-Points(像素到点工具)

像素到点工具是 LiDAR 模块的新成员,用于从重叠图像(尤其是使用无人机捕获的图像)创建高密度点云、正射影像和 3D mesh 的工具。

基于摄影测量原理,”像素到点”过程从多个图像识别对象, 并从多视匹配以生成 3D 点云。作为点生成过程的衍生产品,该工具还可以通过内插点云的 RGB 值来生成正射影像,以及具有逼真的纹理的 3D 模型。

像素到点提供摄影测量方式的点云创建,既经济实惠又简单明了,并越来越多地用作传统 LiDAR 采集的替代方案。

P2P-1024x580.jpg
使用像素到点工具创建的谷仓的 3D 点云

2、自动点云重新分类

LiDAR 模块的自动重新分类工具可以准确识别表示地面、植被、建筑物和电力线的点。

LiDAR 模块中的算法分析点云的几何属性和特征,以快速对这些特征进行分类。此过程通常用于在创建数字地形模型 (DTM) 时分类出地面点。或是在从点云提取其它类型矢量要素(如建筑物或树木)时先分类出地面点。

Auto_Classification-1024x580.jpg
在LiDAR图层中识别并重新分类的建筑物和树木

3、特征提取

特征提取工具用于从已分类的点云中创建矢量对象。

基于一系列可自定义的设置,将代表建筑物、树木和电力线的点云提取为一系列 3D 矢量对象,或者将建筑物提取为 3D 模型。

特征提取对于创建建筑物轮廓线、从分类的 LiDAR 数据定义屋顶结构、电力线和其他 3D 要素特别有用。

Extraction-1024x580.jpg
从 LiDAR 数据中提取的电力线的矢量线

4、自定义特征提取

自定义特征提取用于从点云数据中划分出非典型 3D 特征。

该功能通过在一系列连续的垂直路径剖面视图中定义控制节点,从而创建精确的 3D 线或面要素。使用自定义特征提取的示例可用于定义如道路路边、管道或排水沟等。

Curb-1024x580.jpg
使用垂直断面功能对路缘边缘进行数字化

5、从LiDAR点云创建Mesh

Mesh创建是使用一组选定的点云创建具有逼真颜色或纹理的 3D 矢量对象的功能。

LiDAR 模块提供使用所选点组的 3D 几何和颜色创建三维模型的功能。在 3D 模式下查看时,此模型显示为地物要素的真实3D纹理。

Mesh-1024x580.jpg
从点云中的选定点创建的 3D模型

有关Global Mapper LiDAR模块更多功能,请访问网页

Global Mapper LiDAR模块 您知多少?

Global Mapper软件相信大家都不陌生,从V15版本引入的LiDAR模块如今在全球的LiDAR处理领域已是一支非常重要的力量,特别是V19版本新推出的Pixel-to-Points工具可以说给Global Mapper产品功能带来了革命性的变化,Global Mapper LiDAR模块继承了Global Mapper标准版高性价比的特点, 它的成本只是同类软件产品的一小部分,对于使用或管理地面或机载激光雷达以及其他点云数据集的任何人来说都是必备的工具!


LiDAR模块概述

Global Mapper LiDAR模块是该软件的可选增强功能,可提供众多先进的LiDAR处理工具,包括Pixels-to-Points™,用于从一系列图像中创建摄影测量点云,自动点云分类,自动提取建筑物,树木和电力线,断面查看和点云编辑,自定义数字化或提取三维线和面要素,更快的表面生成,LiDAR质量控制,以及更多。


LiDAR模块提供的主要功能

  • Pixels-to-Points工具,用于从重叠图像创建高密度点云,同步生成正射镶嵌影像和3D Mesh
  • 方便的LiDAR工具栏,可轻松访问关键的编辑和分析功能
  • 多个网格化选项,可实现更快的DSM或DTM生成
  • 访问包含十亿或更多点的点云文件
  • 自动点分类工具,可自动区分未分类层中的建筑物,地面,植被和电力线以及地上公用电缆
  • 要素提取功能可自动创建3D建筑物俯视轮廓,树木和电力线
  • 使用Global Mapper的路径断面工具在垂直透视图中查看和编辑点云
  • 使用垂直断面功能进行3D数字化或自定义特征提取
  • 高级过滤选项,可有效删除错误或不需要的点
  • 可定制的噪声点检测和重新分类
  • 用于简化工作流程的LiDAR脚本命令
  • 从底层图像或网格图层进行点着色
  • 用于使用地面控制点校正点云高程的LiDAR QC工具
  • 多种点云可视化选项,包括分类、强度、高程、RGB和点密度
  • 支持报告LiDAR统计数据
  • 支持导入和导出最常见的点云格式
  • 支持NIR(近红外)点属性,可选择创建NDVI或NDWI网格
  • LiDAR排序优化,提高显示和分析速度。

Pixels-to-Points™

这款功能强大的工具随着LiDAR模块的19版本推出,可以从一系列重叠图像(例如无人机收集的带地理标记的图像)中创建像LiDAR点云一样的高密度3D点云。使用模块的附加功能,随后可以处理此点云以识别和重新分类地面,建筑物和其他常见分类类型,并根据需要过滤和编辑数据。

将图像转换为点云

点云生成的摄影测量原理

采用摄影测量原理(基于影像进行测量),目前处于测试版的Pixels-to-Points工具分析相邻图像中可识别物体之间的关系,以确定相应表面的三维坐标。作为点生成过程的副产品,Pixels-to-Points工具可以通过对每个点中的RGB值进行网格化来创建正射校正图像,以及具有照片级逼真纹理的3D Mesh。

像素到点工具的工作原理

创建点云的过程首先将图像简单加载到“像素到点”对话框中。为获得最佳效果,建议至少60%重叠并均匀分布从不同角度拍摄的照片。可以预览单个图像,并且可以移除最终点云不需要的图像。然后可以应用各种设置来确定输出质量,分析方法等。最后,可以可选地添加地面控制点以调整点云的水平和垂直定位。处理完成后,点云将自动添加到当前工作空间。在导出到任何支持的点云格式(包括LAS和LAZ)之前,可以对其进行进一步处理或编辑。

Pixels-to-Points过程占用大量内存,可能需要几个小时才能处理完,具体取决于输入数据和质量设置。建议在具有至少16GB 内存的专用计算机上执行此过程。Pixels-to-Points工具还需要64位操作系统。


自动重新分类

基于LiDAR文件或点云的几何属性和其他特性,LiDAR模块的自动重分类工具能够准确识别并自动重新分类代表重要点要素类型的点。首先是识别地面点,用于创建DTM或裸地模型。在剩余的地面以上点云内,可以应用特定算法来识别和重新分类高植被、建筑物、电力线或公用电缆。Global Mapper LiDAR模块具有改进的分类算法,可通过“地面分类”对话框中的控制参数过滤出可能的建筑物,树木和电力线等要素。具有多核的机器将实现更快的地面点自动分类。用户还可以对所选择的点执行自动分类以加速处理。

1544653398712630.jpg
自动分类前的测试数据
lidar-after-auto-classify-building-and-tree_s.jpg
建筑物和树木的自动分类之后
lidar-powerlines_s.jpg
电力线的分类

手动重新分类

使用七种不同的分类类型快速重新分类点。

  • 地面点
  • 高植被点
  • 中等植被点
  • 低植被点
  • 建筑物点
  • 传输塔点
  • 水体点
  • 噪声点
  • 模型关键点

有效的噪声消除

针对LiDAR用户的主要关注点,Global Mapper LiDAR模块提供了一种有效且高效的方法来消除点云数据中的噪声。这个强大的过滤工具可以重新分类或自动删除超出本地区域内超出地面阈值的规定高度或海拔高程的任何点。


LiDAR质量控制

LiDAR模块提供了一系列用于提高点云质量的工具。点可以手动或自动重新分类,裁剪到感兴趣区域的范围,并且可以自动识别和去除噪声点。LiDAR模块提供了一种用于验证点云垂直精度的工具。使用测量的地面控制点,可以检查并调整整个层中的高程值(如有必要)。


高级LiDAR过滤选项

从“配置窗口”中的“选项”选项卡访问LiDAR过滤选项,以便按分类和/或回波类型轻松过滤。并在导出、网格化和从点云中选择时按类别、高程、颜色、扫描角度、源ID、强度、地上高度、NDVI和NDWI(如果可用)和回波类型过滤LiDAR点。


自动提取建筑物,树木和输电线

特征提取允许用户渲染建筑物,树木和电力线,以更好地可视化LiDAR数据。Global Mapper Lidar模块使用户能够轻松快速地进行特征提取,将适当分类的激光雷达点渲染为2D和3D特征对象。这些强大的数据将帮助那些希望用逼真的代表性对象创建更好,更精确的地球模型的用户。


自定义3D数字化和要素提取

使用新的垂直路径剖面功能,垂直于通过点云的定义路径创建一系列自定义间隔横截面视图。可以在每个连续的断面视图内以规则的间隔快速准确地放置3D顶点。序列完成后,使用Global Mapper的标准数字化工具创建3D线性或区域特征。这是用于从高分辨率点云数据描绘路缘石,公用电缆,管道,排水沟或建筑屋顶线的理想工具。


更快的网格化功能

借助强大的网格技术,可以更快,更灵活地创建高程表面,包括通过分级以及其他技术进行智能抽取。


路径断面编辑

该模块还包括直接在路径断面查看器中利用LiDAR工具栏的功能,以便更快地管理、编辑和重新分类点。该模块包括两个选择选项,用于在“路径断面”查看器中选择点,通过单击和拖动方法进行选择,或通过绘制自定义多边形来选择点。

1544653546168124.jpg

结束语

随着LiDAR数据应用快速增长,LiDAR模块通过一系列强大的点云处理工具和卓越的地形创建功能,对Global Mapper的标准版本进行了补充。Global Mapper LiDAR模块继承了Global Mapper标准版高性价比的特点,新的Pixel-to-Points工具可以说是产品功能革命性的变化,并将大大扩展Global Mapper相关领域的应用空间。

Global Mapper学术实验室课程

Global Mapper 学术课程是一系列动手操作的教学指南,提供关于软件某些关键功能的逐步说明。这些实验室文档由Blue Marble应用专家开发,旨在帮助将Global Mapper部署到学术界,同时介绍GIS的一些基本原理。

Global Mapper非常适合满足大多数教师和学生的GIS需求,尤其针对那些更广泛的研究领域来说GIS是其必不可少的基础。通过将强大的GIS数据处理和分析功能与设计简单性相结合,Global Mapper使教师能够专注于空间技术的实际应用,而不是花费宝贵的课堂时间教授学生如何操作软件。

学术实验室课程是作为一系列PDF文件交付的,为学生提供规定工作流程以达到确定的结论。每个实验室课程还包括一个自由形式的练习,要求参与者在解决问题的场景中使用实验室中学到的知识和技能。必要的数据文件包含在内,并可以自由复制到每个学生的计算机上。实验参与者必须将任何导出的数据或文件保存在本地文件夹中,这将使教师有机会评估学生的工作并根据需要提供帮助。每个实验室的介绍都提供了具体说明。

GIS课程主题

Global Mapper学术课程包括以下主题:

  • GIS基本原理简介

本实验涉及向地图添加空间数据的基本过程以及使用数字化仪创建、编辑和查询矢量特征。它还涵盖了一些简单的栅格处理过程,并讨论了导出或共享数据的各种选项。

  • 生成地形表面并使用LiDAR数据创建等高线

本实验将介绍将LiDAR点云转换为网格数字表面模型的过程。一路上,它还涵盖了LiDAR编辑,可视化选项和3D建模。实验课以shapefile格式创建和导出高程等高线结束。

  • 操作属性和创建专题图

几何纠正是将地理参数应用于简单图像文件的过程。本实验涵盖了使用在线地图数据集或已知坐标校正各种图像的几种方法。

  • 从栅格图层中提取矢量要素

在本实验中,分析了各种栅格文件,并通过识别文件中的颜色或高程范围来创建矢量多边形。这种矢量化过程可以消除在影像数字化时通常使用的耗时数字化或跟踪过程。

  • 创建一个流域模型

本实验介绍了从地形表面划分排水模式和集水区的过程。具体的工作流程包括水流分析和提取流域边界。

  • LiDAR分类和提取

本实验利用公开可用的LiDAR数据,对建筑物和树木的点进行识别和重新分类。重新分类的点然后用于提取3D矢量特征。

  • 使用栅格计算器

栅格计算涉及基于与多波段栅格影像中每个像素的值的数值计算。在本实验中,我们使用Landsat影像的近红外和红色波段来计算NDVI。


所有实验参与者必须使用完全许可的Global Mapper版本。有关教育软件许可的问题以及有关允许在多台计算机上同时使用的教育许可选项的信息,请联系北京易凯图科技有限公司(13581809091,sales@ecarto-bj.com)。

如需获取上述Global Mapper自学教程及样例数据,请“注册”提交信息后,即可下载。

Global Mapper产品发展简史

一、Global Mapper产品发展简史 ——Part I

1.jpg2016年重新设计之前的GlobalMapper标志在Blue Marble办公室被戏称为“迪斯科标志”。

1.1 起初……

故事发生在1997年左右,那时比尔盖茨和他的伙伴们刚推出Windows95图形用户界面的操作系统不久,美国地质调查局(USGS)密切关注着个人计算机领域的创新,他们从工作人员办公桌上的全新改版的图形友好计算机中受到启发,该机构计划开展一个项目,开发免费软件应用程序,以浏览查看其正在蓬勃发展的数据集。这个项目的成果是一个名为dlgv32的软件产品,它的主要开发人员是Mike Childs,他的名字在随后的二十年中将成为Global Mapper的代名词。

坦白说,dlgv32并不是一个可以顺利脱口而出的名字,但是对于这个绰号来说,20世纪90年代有一定的逻辑:

DLG = Digital Line Graph 数字线划图是USGS矢量数据文件的名称

= Viewer 浏览器的意思

32 = 应用程序支持的32位操作系统

与今天的Global Mapper相比,1997年6月发布的dlgv32,至少可以说是光秃秃的。只支持一种文件格式,没有分析、编辑甚至导出功能,它的名字就真正达到了“V”,仅是一个浏览器(viewer)。就这样。尽管如此,dlgv32却取得了巨大的成功。根据美国地质调查局(USGS)的统计数据,平均每天申请下载100次,头两年后共分发了60,000份。

在版本1.0发布后的一个月,版本1.5完成,并支持USGSDRG数据,该机构的栅格地形图。这种快速的功能升级后来成为Global Mapper的一个重要特征之一的第一个例子:它持续发展的状态。

2.jpg

dlgv32Pro中的高程网格

1.2 Dlgv32演变成Global Mapper

随后的dlgv32版本添加了对最新可用的USGS terrain数据集的支持,其中包括应用晕渲来表示高程变化的选项。他们还引入了一种创新且在当时非常独特的重投影功能,该功能将投影参数应用于所有加载数据层——当前版本的Global Mapper用户仍然欣赏这一功能。

随着这种增强的功能和扩展格式的支持,USGS的人们清楚dlgv32的发展超出了该机构的指导能力,因此他们决定发布源代码供商业开发。谁能比MikeChilds更容易接受这个使命呢?

由于成千上万的满意下载者已经在使用dlgv32,因此Mike认识到了该软件的高级版本的潜在市场,因此真正开始了Global Mapper的故事。

首先有必要回顾当时GIS行业的性质。作为一门技术学科,地理信息系统非常属于一小批高技能和训练有素的人掌握。 dlgv32即将发展成的Global Mapper应用成功地将空间技术领域向更广泛的受众开放。

2001年9月,发布了dlgv32 Pro,价格非常优惠。更重要的是,它为Mike独立解决不断增长的客户需求打开了大门,并建立了直接响应客户输入的软件开发模式,没有官僚监督员。从技术上讲,这个第一个商业版本是4.0版本,一直延续到今天的数字命名序列。

1.3  Global Mapper的早期亮点

在随后发布的版本中,许多在今天的GlobalMapper中看到的功能都是依次引入的:

3.jpg

经过三年的专注发展,GlobalMapper已经开始在GIS界获得相当的关注,不仅在美国乃至全世界。尽管事实上没有正式的市场营销或积极的业务发展,但仍然发生了这种情况。大多数早期用户来自同事或客户的口碑推荐,作为他们最初了解该软件的主要原因。

这些早期的用户也对指导GlobalMapper的持续发展起到了重要作用。针对个人的要求,Mike经常会创建一个软件更新并向请求者提供一个独特的版本,通常在初始联系的几个小时内完成。这是一个互惠的安排:Mike能够开发专门针对特定行业需求的功能,并且能够依赖请求者在将新功能并入通用版本之前对其进行测试。请求者从他们收到Global Mapper 版本的事实中受益,该版本是为满足他们的需求而定制的。虽然GlobalMapper 早在这些早期就有了相当大的成熟,而且现在遵循更正式的开发流程,但这种潜在的被动式(需求牵引)开发理念今天仍然普遍存在。

在GlobalMapper简史的第二部分中,我们重点介绍了从2005年到2011年底Blue Marble Geographics收购GlobalMapper的里程碑事件。

二、Global Mapper产品发展简史—Part II

4.jpg

就像任何5岁的孩子都会认为的那样,每一个好故事都以“从前……”开头。对于Global Mapper来说,那个时间是1997年,当时它的前身dlgv32由USGS构想并由Mike Childs实现。继续用讲故事的比喻,dlgv32只是一只丑陋的小鸭,最终将自己转变成Global Mapper的美丽天鹅。安徒生的会同意从小天鹅到天鹅的过渡是一个缓慢且常常是艰巨的过程,当然这个过程也适用于Global Mapper。

在Global Mapper这个简短历史的第一部分,我们将软件的形成年代作为它的第一个短暂阶段:从一个简单的浏览应用程序到青春期作为一个刚起步的GIS工具。在第二部分中,我们将继续这个故事,因为Global Mapper进行了一次非凡的演变,将自己确立为地理空间软件领域的杰出参与者。

值得注意的是,在这次旅程的大部分时间里,Global Mapper的开发仍然是Mike Childs独自负责。许多用户都表示惊讶,软件获得了全球的关注,只有一个人掌舵。 Mike以某种方式能够在最小的协助支持下同时开发、分发和支持Global Mapper。 Mike在周六晚上十点响应客户问题的故事,在此期间他不仅提供一对一的帮助,而且经常调整代码并提供定制版本,这些都是传奇故事。虽然Global Mapper从那些时候以来有了显着发展,但这种与客户的直接互动依然是其开发过程的重要特点。

在GlobalMapper简史第一部分的结尾处,我们已经达到了Global Mapper的2004年和5.09版本。到那个阶段,它已经开始转向全球GIS社区。在个人层面上,这是我第一次遇到该软件的时间。在DeLorme公司(一家以图集和Gazetteer地名辞典系列闻名的公司)做制图生产的工作中,我需要一个工具来让我操作公司纸质和数字产品中使用的一些数据集。与当时大多数Global Mapper爱好者一样,我对该软件的了解是通过一位同事的口碑推荐,而这位同事又从前工作场所的客户那里了解到Global Mapper。我随后向我的许多地理空间同志推荐了它。等等,等等。

2.1  Global Mapper开发速度加快

2004年底发布的Global Mapper V6版引入了几个重要的新功能和功能,包括用于渲染三维地形数据模型的3D Viewer查看器,支持显示在线数据(最初限于TerraServer影像),引入批量转换工具,并支持多种新格式,包括JPEG2000。这个快速的发展周期随着每一次的发布而继续:

5.jpg
2.2 Blue Marble收购Global Mapper

到2011年底,Global Mapper开始经历自14年前推出以来其最重大的转变。总部位于缅因州的Blue Marble Geographics是一家谦虚的地理信息软件公司收购了GlobalMapper,该公司以其在坐标转换和大地测量学方面的专长而闻名。他们也收购了Mike Childs的服务。虽然长期以来全球Mapper用户错误地认为Global Mapper被一些不知名的公司吞并(Blue Marble当时仅有20多名员工),但这一收购案证明是一次多方共赢的安排。

  • Blue Marble赢得了(显然),因为他们能够将Global Mapper添加到他们的软件产品套件中。
  • Mike Childs也赢了,因为他能够利用Blue Marble的销售和支持团队,让他花更多的时间开发软件。有传闻说,他也可能从经济上受益。
  • 最后,Global Mapper的用户赢了,因为在随后的几年里,软件的功能和突出将呈指数级增长, 这得益于Global  Mapper开发人员不断壮大,渴望和热心的技术支持团队以及专业的全球销售和营销专家。

在最后一部分中,我们总结了这一冒险故事,并回顾了过去七年Global Mapper的发展亮点,并在最近发布的19版本中达到新的高度。

三、Global Mapper产品发展历史—Part III

6.jpg

Global Mapper 19.1中Multiview的这个屏幕截图是该软件自dlgv32以来已经走了多远的最好例子。

在2011年,如果你还记得,我们的英雄 – 潇洒而不知疲倦的 Global Mapper  – 似乎已被无情和恶意的Blue Marble Geographics绑架。至少这是当时许多软件最忠诚的信徒的印象。

“Global Mapper已经被一些不露脸,毫不留情的企业巨兽吞噬了。早年的自由发展的互动式发展哲学已经过去了。”或者他们担心,然而,事实并非如此。

3.1 Global Mapper成为团队的努力

对于作为Global Mapper用户的您来说,这个过渡时期以及随后的几年中最重要的结果是软件开发的快速加速。获得支持团队后,Mike Childs能够独特地将自己的才能应用于Global Mapper的开发。一些日常和平常的任务,比如将他的劳动成果出售给顾客,都留给了一批专门的专家。如果告诉你真相,这一过渡时期最困难的一个方面就是说服 Mike让他相信他不再需要回应每一个客户问题。

毋庸置疑,放弃对多年来养育的东西的控制并非总是那么容易,但Global Mapper正逐渐成为每个开发人员的团队努力,这些开发人员对软件的功能作出了重大贡献。如果有可能量化和绘制Global Mapper的演变图,那么2011年是斜率开始变得更加陡峭的一年,并且次年的第14版的发布证明了这一点,并有助于让愤世嫉俗者变得沉默。

3.2 Global Mapper从2012年至今的发展

单独14版本的新功能、更新工具、性能改进和各种错误修复的列表清单长达10页,这一趋势在后续版本中一直延续。在此文档中将这段时间的发展压缩成可管理的大小对软件不利。如果您有几个小时的空闲时间并且想要未删节的版本,请阅读软件介绍文件中的新增功能部分。我保证你会了解你所不知道的软件包含的功能和特点。

7.jpg

在2016年末,Global Mapper将会在其发布历史中经历可以说是最重要的更新,至少从肤浅的角度来看。出去了旧的“迪斯科”标志以及其独特的界面设计,并带来了全新的外观,更新的图标,更直观的布局和全新的Logo。没有改变的是软件的强大功能以及对其功能的持续改进。

8.jpg

尽管回顾过去所走的路,很有趣,有时还能受到启发,并惊叹于你已经走了有多远,Blue Marble的理念非常注重向前看。 Global Mapper版本20及更高版本已经在制定计划。得益于我们不断增长的客户群的持续支持,以及他们渴望参与这个卓越应用程序所独有的协作开发流程,我们将在未来几年添加一系列新功能。 Global Mapper前进的脚步永远不会停止。

作者简介:David McKittrick,BlueMarble Geographics公司的高级应用专家,毕业于北爱尔兰大学,在GIS和制图行业拥有25年的经验,专注于空间技术应用和实现。

编译者:陈春华(chen_chh@ecarto-bj.com),在测绘&GIS领域从业12年,2017年7月成立北京易凯图科技有限公司,目前专注于为地理空间行业用户提供专业的地理信息与地图制图软件产品和地图制图服务,2017年底成为Global Mapper软件在中国的官方代理商。